Teichmüller Theory: Classical, Higher, Super and Quantum

Théorie de Teichmüller : classique, supérieure, super et quantique

HYBRID CONFERENCE /  5 – 9 October 2020
Scientific Committee 
Comité scientifique

Olivier Guichard (Université de Strasbourg)
Vlad Marcovic (Caltech)
Shigeyuki Morita (University of Tokyo)
Nathalie Wahl (University of Copenhagen)​

Organizing Committee
Comité d’organisation

Ken’ichi Ohshika (Osaka University)
Athanase Papadopoulos (Université de Strasbourg)
Robert C. Penner (IHES)
Anna Wienhard (University of Heidelberg)

(with abstracts)
(Marseille, France local time) 


The subject of the conference is the recent developments of Teichmüller theory with its ramifications, including the classical, the higher, the super and the quantum aspects of the theory. The conference will bring together people working in the various aspects of this theory, so that they present and discuss their works, and so that they have the opportunity of exchanging ideas and collaborating with each other. The focus will be on the recent developments, in particular on the following topics: The metric theory (Teichmüller, Weil-Petersson, Thurston), higher Teichmüller theory and representations of surface groups, infinite-dimensional Teichmüller spaces, the Lorentzian geometry aspects, Kleinian groups, the relation with quantum invariants of three-manifolds, mapping class group actions on various complexes, the cohomological aspects of mapping class groups and related groups (Torelli, Johnson, outer automorphisms of free groups, etc.), Thompson’s groups in relation with quantization, super Riemann surfaces and super Teichmüller theory, and the relations with cluster algebras and with theoretical physics. In the past few years, this theory has grown in a spectacular manner, new problems and new interactions with other fields (inparticular mathematical physics) arose. All these aspects will be highlighted during the conference. The intellectually unifying principle involves representations of surface groups in various classes of higher and super Lie and quantum groups and their automorphisms. We believe that establishing link between the various points of view is a new and important outcome. The invited speakers include the top researchers in the field. We also include several post-docs and talented young mathematicians.

Discussion rooms will be available to registered conference participants via the link below. Your access code to the rooms is provided by the organizers.
This page is accessible with a password issued by CIRM.

Nous proposons une conférence sur les développements récents de la théorie de Teichmüller et de ses ramifications, incluant la théorie classique, la théorie supérieure, la théorie des “super Riemann surfaces”, et les aspects quantiques. Nous voudrions regrouper des mathématiciens travaillant dans ces quatre directions pour leur permettre d’échanger leurs idées et de collaborer. L’accentest mis sur les développements récents, en particulier sur les sujets suivants : la théorie métrique (Teichmüller, Weil-Petersson, Thurston), les groupes Kleiniens, la théorie de Teichmüller supérieure et les représentations des groupes de surfaces, les espaces de Teichmüller de dimension infinie, les aspects liés à la géométrie Lorentzienne, la relation avec les invariants quantiques, les groupes modulaires et leurs actions, la cohomologie des groupes modulaires et les groupes reliés (Torelli, Johnson, automorphismes du groupe libre, etc.), les groupes de Thompson en relation avec la quantification, les super surfaces de Riemann, la super théorie de Teichmüller et les relations avec les algèbres amassées et la physique théorique. Les conférenciers invités incluent de grands spécialistes de ces questions. Nous invitons aussi de jeunes chercheurs travaillant dans le sujet. Durant les dernières années, le sujet a évolué de manière spectaculaire, de nouveaux problèmes sont apparus, ainsi que de nouvelles interactions (en particulier avec la physique théorique). Tous ces aspects seront mis en valeur. Le principe unificateur sera les représentations des groupes des surfaces dans diverses classes de groupes de Lie (respectivement super groupes de Lie ou groupes de Lie quantiques) ainsi que les automorphismes de ces représentations. Nous pensons que le fait de rassembler et d’établir des liens entre ces différents points de vue constitue un apport important pour la communauté des géomètres.

Hyungryul Baik (KAIST)   Asymptotic translation lengths and normal closures of pseudo-Anosov mapping classes
Christian Blanchet (Institut de Mathématiques de Jussieu, Paris)   Quantum invariants of links with SL2(C) flat connections
Viveca Erlandsson (University of Bristol)   Rigidity and flexibility of hyperbolic cone surfaces
Vladimir Fock (Université de Strasbourg)   Local systems and Satake duality
Louis Funar (Université Grenoble Alpes)   Rigidity of pants complexes in a profinite context
Nariya Kawazumi (The University of Tokyo)   A double version of Turaev’s gate derivatives
Inkang Kim (KIAS)   New Kahler metrics on Teichmueller space and harmonic maps
Sang-Hyun Kim (Seoul National University)   The Hölder regularity of certain non-solvable group actions on intervals
Georgios Kydonakis (Université de Strasbourg)   Towards a parabolic higher Teichmüller theory
Vladimir Markovic (University of Oxford)   Teichmuller flow and complex geometry of Moduli spaces
Daniel Massart (Université de Montpellier)   Algebraic intersection on translation surfaces
Hideki Miyachi (Osaka University)   Complex analysis on Teichmuller space
Sergei Natanzon (National Research University Higher School of Economics)   Moduli space of Klein foams
Beatrice Pozzetti (Heidelberg University)   Collar lemmas for representations to higher rank groups
Florent Schaffhauser (Université de Strasbourg & University of Los Andes)    Twisted character varieties, split real groups and higher Teichmüller components
Andrea Seppi (CNRS Université Grenoble Alpes)    Affine deformations of quasi-divisible convex cones
Vlad Sergiescu (Université Grenoble Alpes)    Remarks on the Schur multiplier of Thompson groups
Hiroshige Shiga (Kyoto Sangyo University)   Dynamical Cantor sets and quasiconformal mappings
Masaaki Suzuki (Meiji University)   On a structure of the symplectic derivation Lie algebra of the free Lie algebra
Alexander Thomas (Université de Strasbourg)    Geometric approach to Hitchin components via punctual Hilbert schemes
Constantin Vernicos (Université de Montpellier)   Entropy of Hilbert geometries and Complexities of convex bodies
Binbin Xu (University of Luxembourg)    Equivalent curves on surfaces
Firat Yasar (Université de Strasbourg)    Infinite-dimensional Teichmüller spaces
Mahmoud Zeinalian (The City University of New-York)   tba
Anton Zeitlin (Louisiana State University)  Hyperbolic supergeometry, super-Teichmueller spaces, and applications