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1-direction geodesics in flat surfaces (in dimension 2)

1

geodesic on P of slope a=14+VvV2=1[2:2,2,2,...] =2+

2 1
+ 24 51—

first detour crossing of a vertical street and its shortcut
second detour crossing of a vertical street and its shortcut

slope of shortcutisa—2=v2—-1=a1=10[2,2,2,..]
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assume V starts from some vertex of P

almost vertical geodesic V of slope «

< almost horizontal shortline H of slope a1

almost horizontal geodesic H of slope a1

— almost vertical shortline V of slope «

V and H are mutual shortlines

apply shortline process twice «— back to original geodesic

use 2-generation shortline to understand a geodesic

use 2-generation ancestor to understand a geodesic
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ancestor process

almost vertical units of V and almost horizontal units of H
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ancestor process

V2 V2 V2 V2

fUl fUl rv3 / vl

hiho < vov3, v3v1, V1V3, V3V] hih3 — vovz, v3v1, V1V3
book keeping — Delete End Rule
hiho — wvov3, v3v1, V1V3 hihz — wvov3, v3V1
book keeping — Keep End Rule

hiho — wv3v1, v1v3, V3V] hih3z — v3v1, v1v3



Delete End Rule

hi1ho — vov3,v3v1,v103
hi1hz — vou3,v3v1
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Delete End Rule

hi1ho — vov3,v3v1,v103
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Delete End Rule

hi1ho — vov3,v3v1,v103
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Keep End Rule
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U3UT — thQ, thQ, h2h3
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numbers of 2k-generation ancestor units described by wy,
wi, = wo(MyM>p)*
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2-step transition matrix A = M3 M{ = i i i g 8 8
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wo = (0,1,0,0,0,0) — first almost vertical unit is hqihs
numbers of 2k-generation ancestor units described by wy,
wi, = wo(MyM>p)*

Wl = (MEM Y]

(21 1 1 0 0)
110023
2-step transition matrix A = M3 M{ = i i i g 8 8
211111
\0 0 002 3
R 1++/5\°
A= (14+V2)?%, Ao = — CA3=..., M= ....,d5=..., Xg

VA =1[2:2,2.2...], V2o =1[1:1,1,1,..]
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L. (t) — geodesic with slope a; = k + \/k? + 1 = [2k; 2k, 2k, 2k, . . .]

S — arbitrary convex set on a square face of L-surface P

T>2 = |meas{t € [0,T] : Li(t) € S} — area?ES)T| — 0 (Tmo(k))

oty = 1982 los o)
log(k + k2 + 1) log | A1 (k)

A1 (k) and X»(k) eigenvalues of A(k) with largest absolute values

k+\/k2+ 4
T 5 T = [k; k,k, k,...] obtained from «4 by digit-halving

error term is sharp
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Beck—Donders—Yang (2020)

L~(t) — geodesic with slope v > 0 quadratic irrational of the form
v = [2¢co; 2¢1,...,2¢p,2a1, .. .,2am, 201, -, 20m, - - -]

A(~v) — some appropriate transition matrix

A1(v) and X\>(v) are eigenvalues of A(~v) with largest absolute values

log [A2(7)]
log [A1(7)]

irregularity exponent — kg(vy) =
A1(y) eigenvalue with larger absolute value of (20’1 1) <2am 1)

A2(7y) eigenvalue with larger absolute value of <_a1 1) (‘am 1)
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S — arbitrary convex set on a square face of L-surface P

o ko(y) >0

- ‘meas{t C0.T]: Lo(t) € S} — area3(S)T‘ s (Tﬁso(v))
error term is sharp

o ko(y) =0

T>2 = ‘meas{t € [0,T] : Lr(t) € S} — areaéS)T‘ =0 ((Iog T)Q)



Beck—Donders—Yang (2020)

L~(t) — geodesic with slope v > 0 quadratic irrational of the form
v = [2¢co; 2¢1,...,2¢p,2a1, .. .,2am, 201, -, 20m, - - -]

A(~v) — some appropriate transition matrix

A1(v) and X\>(v) are eigenvalues of A(~v) with largest absolute values

log [A2(7)]
log [A1(7)]

irregularity exponent — kg(vy) =
A1(y) eigenvalue with larger absolute value of <2a1 1) <2am 1)

Ao () eigenvalue with larger absolute value of <_a1 1) <_am 1)
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P — finite polysquare surface with street-LCM h

~ — quadratic irrational with all continued fraction digits divisible by h
L — 1-direction geodesic in P with slope ~

A(~v) — some appropriate transition matrix

A1 () and X>(«) are eigenvalues of A(v) with largest absolute values
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Beck—C—Yang (> 2020) 9
P — finite polysquare surface with street-LCM h

~ — quadratic irrational with all continued fraction digits divisible by h
L — 1-direction geodesic in P with slope ~

A(~v) — some appropriate transition matrix

A1 () and X>(«) are eigenvalues of A(v) with largest absolute values

log [A2 ()]

irregularity exponent — kg(vy) =
l0g [A1(7)]

time-quantitative equidistribution of £ with respect to all convex sets
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d — number of square faces of polysquare surface P

2d x 2d transition matrix

geodesic on cube surface — 1-direction geodesic on surface

aq C3
b4 g1 d3 b4
by 94 c1 dy b3
Cq €4 as as
dy f2 €1 /3 94
dy fa fa g3
es
Co €2
a
a4
€4 Cq
€1
g1 f1 fi ds
g2 f2 €3 f3 ds
al ay €2 C2
by dy  c3 92 b3
b2 dl gs b2

C1 az



d — number of square faces of polysquare surface P

2d X 2d transition matrix with d = 24 — 48 x 48 transition matrix

geodesic on cube surface «— 1-direction geodesic on surface

aq C3
b4 g1 d3 b4
by 94 c1 dy b3
Cq €4 as as
dy f2 €1 /3 94
dy fa fa g3
es
Co €2
a
a4
€4 Cq
€1
g1 f1 fi ds
g2 f2 €3 f3 ds
al ay €2 C2
by dy  c3 92 b3
b2 dl gs b2

C1 az
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polysquare surface P with d square faces 11
almost vertical geodesic Vy from vertex in P of slope o = [n; m,n,m, .. .]
Vo made up of 2d types of almost vertical units of slope «

vector space W with basis # = {2d almost vertical units}

almost horizontal shortline Hy in P of slope afl with ay = [m;n,m, .. ]
Hp made up of 2d types of almost horizontal units of slope ole
vector space W’ with basis 7/ = {2d almost horizontal units}

almost vertical shortline Vy in P of slope a = [n; m,n,m,...]

back to W with basis #
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coefficient vectors taken as column vectors
— 2d x 2d transition matrix M{
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first step of ancestor process # — %'
coefficient vectors taken as column vectors
— 2d x 2d transition matrix M{

second step of ancestor process %' — W
coefficient vectors taken as column vectors
— 2d x 2d transition matrix M4

2-step ancestor process # — W' — W

— 2d x 2d 2-step transition matrix A = Mi M{

12
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A has eigenvalues \1,..., s with multiplicities d1,...,ds
A = ... = | di+...+ds=2d
CHU=W;&...0Ws

W, — A-invariant subspace of C24

containing eigenvector W, corresponding to eigenvalue \;
d; =1 = W, generates W,

di >1 = basis V; ;, 5 =1,...,d;, of W;, with W; =W, 4

basis W, ;, i=1,...,s, j =1,...,d;, of C24

13
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Vo starts at vertex of P
with a finite succession of almost vertical units

with column coefficient vector wg with respect to #

S di S di
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Vo starts at vertex of P
with a finite succession of almost vertical units

with column coefficient vector wg with respect to #
S dz’ S di
wo =) D cijVij wr=A"wog= ) } cijAWV;;
1=15=1 i=1j=1

assumption — |\;| > 1 = basis of W, consisting only of eigenvectors

N <1, i=s90+1,...,s

S0 dz'
wr = A"wg= > > ¢ jAIW,; 4 bounded error
i=1j=1
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V starts at vertex of P 14
with a finite succession of almost vertical units

with column coefficient vector wg with respect to #
S dz’ S di
wo =) D cijVij wr=A"wog= ) } cijAWV;;
1=15=1 i=1j=1

assumption — |\;| > 1 = basis of W, consisting only of eigenvectors

N <1, i=s90+1,...,s
so d;

wr = A"wg= > > ¢ jAIW,; 4 bounded error
i=1j=1

main term and main error term — two largest eigenvalues
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algorithm for finding crucial eigenvalues of A 15
h — number of horizontal streets in polysquare surface P

can find A-invariant subspace V of C24

— with 2h generators and explicitly given

— contains eigenvectors corresponding to all relevant eigenvalues of A

h x h street-spreading matrix S Aly = (S —SI_ d f)

eigenvalues and eigenvectors of S
— eigenvalues and eigenvectors of Aly,

— relevant eigenvalues and eigenvectors of A
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1-direction geodesic on regular octagon surface

7+
1 3
4 6
7- '
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1-direction geodesic on regular octagon surface
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1-direction geodesic on regular octagon surface

the 3 rectangles are similar
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1-direction geodesic on regular octagon surface

/2

the 3 rectangles are similar

almost horizontal detour crossings and almost vertical shortcuts

17
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street-rational polyrectangle surface

normalized horizontal street length =

length of horizontal street

width of horizontal street

/2

”/)

/_’/

normalized horizontal street lengths 2(1 4+ v/2) and 1 4+ V2
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street-rational polyrectangle surface 13

length of horizontal street
width of horizontal street

normalized horizontal street length =

ﬁ___ﬂ
/’/
y

normalized horizontal street lengths 2(1 4+ v/2) and 1 4+ V2
h* — normalized horizontal street-LCM

— smallest integer multiple of all normalized horizontal street lengths



street-rational polyrectangle surface 13

length of horizontal street

normalized horizontal street length = — ,
width of horizontal street

ﬁ/—w

///

normalized horizontal street lengths 2(1 4+ v/2) and 1 4+ V2
h* — normalized horizontal street-LCM h* =2(1 4+ v2)

— smallest integer multiple of all normalized horizontal street lengths



street-rational polyrectangle surface

h* — normalized horizontal street-LCM

v* — normalized vertical street-LCM
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street-rational polyrectangle surface

h* — normalized horizontal street-LCM

v* — normalized vertical street-LCM

if start with almost vertical geodesic

slope a = ’U*ao + 1 1 with ag,aq,a2,a3,...

h*a1—

U*GQ+W

c N

19
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Beck—C—Yang (> 2020)

P — right triangle with angle «/k for even k > 8
infinitely many explicitly given slopes «

L — billiard orbit in P with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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Beck—C—-Yang (> 2020)

P — right triangle with angle «/k for even k > 8

infinitely many explicitly given slopes «

L — billiard orbit in P with initial slope «

superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets

P k=67
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billiard in regular octagon region
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billiard in regular octagon region

partial unfolding of billiard in left regular octagon
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billiard in regular octagon region

— 1-direction geodesic on surface
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— 1-direction geodesic on surface
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billiard in regular octagon region

— 1-direction geodesic on surface
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billiard in regular octagon region

— 1-direction geodesic in street-rational polyrectangle surface

B B
npEEann
EXC q v

Q v
STr] L. v
o O

23



Beck—C—Yang (> 2020)

P — reqular k-gon for even k£ > 6
infinitely many explicitly given slopes «
L — billiard orbit in P with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets

24



billiard in right triangle with angle n/5
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billiard in right triangle with angle n/5

— 1-direction geodesic on regular double-pentagon surface
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1-direction geodesic on regular double-pentagon surface
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1-direction geodesic on regular double-pentagon surface
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1-direction geodesic on regular double-pentagon surface

— 1-direction geodesic on street-rational polyparallelogram surface
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1-direction geodesic on regular double-pentagon surface

— 1-direction geodesic on street-rational polyparallelogram surface

visualized as a street-rational polyrectangle surface
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Beck—C—Yang (> 2020)

P — reqgular double-k-gon surface for odd k£ > 5
infinitely many explicitly given slopes «

L — 1-direction geodesic in P with slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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Beck—C—Yang (> 2020)

P — right triangle with angle «/k for odd k> 5
infinitely many explicitly given slopes «

L — billiard orbit in P with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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billiard in regular pentagon region
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billiard in regular pentagon region

partial unfolding of billiard in left regular pentagon
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billiard in regular pentagon region

— 1-direction geodesic on surface
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billiard in regular pentagon region

— 1-direction geodesic on surface
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— 1-direction geodesic on surface
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billiard in regular pentagon region

— 1-direction geodesic on surface
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billiard in regular pentagon region

— 1-direction geodesic on surface
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billiard in regular pentagon region 29

— 1-direction geodesic on street-rational polyparallelogram surface




Beck—C—Yang (> 2020)

P — reqular k-gon for odd k£ > 5
infinitely many explicitly given slopes «
L — billiard orbit in P with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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geodesics on surfaces of the Platonic solids
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geodesics on surfaces of the Platonic solids

geodesic on regular tetrahedron surface — integrable
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geodesics on surfaces of the Platonic solids 31
geodesic on regular tetrahedron surface — integrable

geodesic on cube surface — 1-direction geodesic on polysquare surface
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geodesics on surfaces of the Platonic solids 31
geodesic on regular tetrahedron surface — integrable
geodesic on cube surface — 1-direction geodesic on polysquare surface

geodesic on regular dodecahedron surface
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geodesic on regular tetrahedron surface — integrable

geodesic on cube surface — 1-direction geodesic on polysquare surface
geodesic on regular dodecahedron surface

standard net of regular dodecahedron surface has 12 regular pentagons
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1-direction geodesic on finite street-rational polyparallelogram surface
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geodesics on surfaces of the Platonic solids 31
geodesic on regular tetrahedron surface — integrable

geodesic on cube surface — 1-direction geodesic on polysquare surface
geodesic on regular dodecahedron surface

— 1-direction geodesic on surface with 120 regular pentagon faces
1-direction geodesic on finite street-rational polyparallelogram surface
geodesic on regular octahedron surface

geodesic on regular icosahedron surface

polytriangle surfaces



geodesic on regular octahedron surface
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geodesic on regular octahedron surface

A

C

IS I

6 F_ 8

—

AN

B JZON A

vertex-disjoint faces — (1,5), (2,6), (3,7), (4,8)

D
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geodesic on regular octahedron surface

streets between vertex-disjoint faces — (1,5), (2,6), (3,7), (4,8)
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geodesic on regular octahedron surface

streets between vertex-disjoint faces — (1,5), (2,6), (3,7), (4,8)

street-rational polyparallelogram surface
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geodesic on regular octahedron surface

streets between vertex-disjoint faces — (1,5), (2,6), (3,7), (4,8)

detour crossings and shortcuts

33



billiard on 60-degree rhombus
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billiard on 60-degree rhombus

C2
ds €1 b1
a1
b2
C3 €3
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dq
C1 €4 as
ba
fan A
ai
do €6 b3

C1
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billiard on 60-degree rhombus
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billiard on 60-degree rhombus
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billiard on 60-degree rhombus
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billiard on 60-degree rhombus
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Beck—C—Yang (> 2020)

P — finite polytriangle surface

infinitely many explicitly given slopes «
L — geodesic in P with slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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Beck—C—Yang (> 2020)

P — finite polytriangle region

infinitely many explicitly given slopes «
L — billiard orbit in P with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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shortline method works for all Veech surfaces
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shortline method works for all Veech surfaces
Veech (1989)
P — Veech surface

— street-rational decomposition in any direction with rational slope
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— 1-direction geodesics exhibit uniform-periodic dichotomy — optimal



shortline method works for all Veech surfaces 36

Veech (1989)

P — VVeech surface

— Street-rational decomposition in any direction with rational slope

— 1-direction geodesics exhibit uniform-periodic dichotomy — optimal

polysquare surfaces (including flat torus) and polytriangle surfaces

translation surfaces of regular polygon billiards

others
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length _ 14+2a 1 24+4a 1 14 2a
, of horizontal streets S I S
width 1/2 b 1 b 1/2
3

a=riVd+r>>0, b= 3r1\/c_l—3r2—§ >0, r1,75 € Q, d > 2 squarefree

two different shapes with ratio 2b(1 + 2a) = 3(4r?d — (2ro + 1)2) € Q



class of cathedral surfaces — McMullen—Mukamel-Wright (2017) 37

length
width a 1/2

1 3426 342 1 2
of vertical streets —, T , + , —

1/2 " a' 2a

3
a=riVd+r>>0, b= 37“1\/c_l—37“2—§ >0, r1,75 € Q, d > 2 squarefree



class of cathedral surfaces — McMullen—Mukamel-Wright (2017) 37

1 3+2b 3420 1 2

length ,
_ of vertical streets : : y Ty
width a 1/2 1/2  a 2a

3
a=riVd+r>>0, b= 3r1\/c_l—3r2—§ >0, r1,75 € Q, d > 2 squarefree

two different shapes with ratio 2a(3 4 2b) = 12(r?d —r3) € Q



class of cathedral surfaces — McMullen—Mukamel-Wright (2017) 37

Beck—C—Yang (> 2020)

infinitely many explicitly given slopes o

L — geodesic in cathedral surface with slope «
superdensity of L

can compute irregularity exponent
time-quantitative equidistribution of L relative to all convex sets



McMullen (2005, 2006)

classification of all affine-different Veech surfaces of genus 2

— Calta—McMullen L-staircases

— regular decagon surface with parallel edge identification
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classification of all affine-different Veech surfaces of genus 2

— Calta—McMullen L-staircases

— regular decagon surface with parallel edge identification
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Calta (2004) @ McMullen (2003) — L-staircases

generalization of the L-shape region and L-surface

...............

V2

U1

Ry

V2

U1
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Calta (2004) & McMullen (2003) — L-staircases 39

generalization of the L-shape region and L-surface

Ry

...............

1 a—1 hq ho

a = rl\/g—|-r2, b = rl\/g—l- 1 —1ro, 71,70 € Q, d> 2 squarefree

street-rational polyrectangle surface



Beck—C—Yang (> 2020)

infinitely many explicitly given slopes «

L — geodesic in any surface of C—McM family with slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets
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Beck—C—Yang (> 2020) 40
infinitely many explicitly given slopes «

L — billiard orbit in any region of C—McM family with initial slope «
superdensity of L

can compute irregularity exponent

time-quantitative equidistribution of L relative to all convex sets



a family of genus 2 non-regular decagon surfaces

(0,1) (a,1) 0,1) (a,1)

(b, ¢)

<_170>

(0,-1) (0,-1)

width 2, height 2

(b, )

(1,0)
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a family of genus 2 non-regular decagon surfaces — not Veech

(0,1) (a,1) 0,1) (a,1)

(b, ¢) (b, c)

(—1,0) (1,0)

(0,-1) (0,-1)

width 2, height 2
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a family of genus 2 non-regular decagon surfaces — not Veech

(0,1) (a,1) 0,1) (a,1)

(b, ¢) (b, c)

(—1,0) (1,0)

(0,-1) (0,-1)

affine-different, width 2, height 2

infinitely many different a, b, ¢ give street-rationality

41



a family of genus 2 non-regular decagon surfaces S
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a family of genus 2 non-regular decagon surfaces S

McMullen (2005) — translation surface S in genus 2 not Veech

= exist geodesics on S neither dense nor periodic
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a family of genus 2 non-regular decagon surfaces S 42
McMullen (2005) — translation surface S in genus 2 not Veech

= exist geodesics on S neither dense nor periodic

Cheung—Masur (2006) — translation surface S in genus 2 not Veech

= exist geodesics on S dense but not equidistributed



a family of genus 2 non-regular decagon surfaces S 42
McMullen (2005) — translation surface S in genus 2 not Veech

= exist geodesics on S neither dense nor periodic

Cheung—Masur (2006) — translation surface S in genus 2 not Veech
= exist geodesics on S dense but not equidistributed

Beck—C—Yang (> 2020) — shortline method

= exist geodesics on S with superdensity

= exist geodesics on S with time-quantitative equidistribution
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