BILLIARD ORBITS AND GEODESICS IN NON-INTEGRABLE FLAT DYNAMICAL SYSTEMS (PART II)

William Chen
Macquarie University Sydney

Workshop on Discrepancy Theory and Applications
Centre International de Rencontres Mathématiques
Luminy
November/December 2020

József Beck Michael Donders Yuxuan Yang C

L-shape region

L-surface \mathcal{P}

1

1-direction geodesics in flat surfaces (in dimension 2)

geodesic on
$$\mathcal{P}$$
 of slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots] = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$

geodesic on
$$\mathcal{P}$$
 of slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots] = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \ldots}}}$

first detour crossing of a vertical street

geodesic on
$$\mathcal{P}$$
 of slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots] = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + 1}}}$

first detour crossing of a vertical street and its shortcut

geodesic on
$$\mathcal{P}$$
 of slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots] = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$

first detour crossing of a vertical street and its shortcut

second detour crossing of a vertical street and its shortcut

geodesic on
$$\mathcal{P}$$
 of slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots] = 2 + \frac{1}{2 + \frac{1}{2 + \frac{1}{2 + \cdots}}}$

first detour crossing of a vertical street and its shortcut

second detour crossing of a vertical street and its shortcut

slope of shortcut is
$$\alpha - 2 = \sqrt{2} - 1 = \alpha^{-1} = [2, 2, 2, ...]$$

almost vertical geodesic V of slope α

 \hookrightarrow almost horizontal shortline H of slope α^{-1}

assume V starts from some vertex of ${\mathcal P}$

almost vertical geodesic V of slope α

 \hookrightarrow almost horizontal shortline H of slope α^{-1}

assume V starts from some vertex of $\mathcal P$

almost vertical geodesic V of slope α

- \hookrightarrow almost horizontal shortline H of slope α^{-1}
- almost horizontal geodesic H of slope α^{-1}
- \hookrightarrow almost vertical shortline V of slope α

assume V starts from some vertex of \mathcal{P}

almost vertical geodesic V of slope α

 \hookrightarrow almost horizontal shortline H of slope α^{-1}

almost horizontal geodesic H of slope α^{-1}

 \hookrightarrow almost vertical shortline V of slope α

V and H are mutual shortlines

apply shortline process twice \hookrightarrow back to original geodesic

assume V starts from some vertex of $\mathcal P$

almost vertical geodesic V of slope α

 \hookrightarrow almost horizontal shortline H of slope α^{-1}

almost horizontal geodesic H of slope α^{-1}

 \hookrightarrow almost vertical shortline V of slope α

V and H are mutual shortlines

apply shortline process twice \hookrightarrow back to original geodesic

use 2-generation shortline to understand a geodesic

use 2-generation ancestor to understand a geodesic

almost vertical units of V

almost vertical units of V and almost horizontal units of H

$$h_1h_2 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3 , $v_3v_1^*$

$$h_1h_2 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3 , $v_3v_1^*$ $h_1h_3 \hookrightarrow v_2v_3$, v_3v_1 , v_1v_3

$$h_1h_3 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3

ancestor process

$$h_1h_2 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3 , $v_3v_1^*$ $h_1h_3 \hookrightarrow v_2v_3$, v_3v_1 , v_1v_3

$$h_1h_3 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3

book keeping - Delete End Rule

$$h_1h_2 \rightharpoonup v_2v_3$$
, v_3v_1 , v_1v_3 $h_1h_3 \rightharpoonup v_2v_3$, v_3v_1

$$h_1h_3 \rightarrow v_2v_3$$
, v_3v_1

ancestor process

$$h_1h_2 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3 , $v_3v_1^*$ $h_1h_3 \hookrightarrow v_2v_3$, v_3v_1 , v_1v_3

$$h_1h_3 \hookrightarrow v_2v_3$$
, v_3v_1 , v_1v_3

book keeping - Delete End Rule

$$h_1h_2 \rightharpoonup v_2v_3$$
, v_3v_1 , v_1v_3 $h_1h_3 \rightharpoonup v_2v_3$, v_3v_1

$$h_1h_3 \rightarrow v_2v_3$$
, v_3v_1

book keeping - Keep End Rule

$$h_1h_2 \rightharpoonup v_3v_1$$
, v_1v_3 , $v_3v_1^*$ $h_1h_3 \rightharpoonup v_3v_1$, v_1v_3

$$h_1h_3 \rightarrow v_3v_1$$
, v_1v_3

$$h_1h_2 \rightharpoonup v_2v_3, v_3v_1, v_1v_3$$

$$h_1h_3 \rightharpoonup v_2v_3, v_3v_1$$

$$h_2h_2 \rightharpoonup v_3v_1^*, v_1v_3$$

$$h_2h_3 \rightharpoonup v_3v_1^*, v_1v_3, v_3v_1$$

$$h_3h_1 \rightharpoonup v_1v_2, v_2v_2$$

$$h_3h_1^* \rightharpoonup v_1v_2, v_2v_2, v_2v_2$$

Delete End Rule

$$h_1h_2 \rightharpoonup v_2v_3, v_3v_1, v_1v_3$$

 $h_1h_3 \rightharpoonup v_2v_3, v_3v_1$
 $h_2h_2 \rightharpoonup v_3v_1^*, v_1v_3$
 $h_2h_3 \rightharpoonup v_3v_1^*, v_1v_3, v_3v_1$
 $h_3h_1 \rightharpoonup v_1v_2, v_2v_2$
 $h_3h_1^* \rightharpoonup v_1v_2, v_2v_2, v_2v_2$

$$h_1h_2
ightharpoonup v_2v_3, v_3v_1, v_1v_3$$
 $v_1v_2
ightharpoonup h_3h_1, h_1h_3, h_3h_1^*$
 $h_1h_3
ightharpoonup v_2v_3, v_3v_1$ $v_1v_3
ightharpoonup h_3h_1, h_1h_2$
 $h_2h_2
ightharpoonup v_3v_1^*, v_1v_3$ $v_2v_2
ightharpoonup h_1h_3, h_3h_1^*$
 $h_2h_3
ightharpoonup v_3v_1^*, v_1v_3, v_3v_1$ $v_2v_3
ightharpoonup h_1h_3, h_3h_1, h_1h_2$
 $h_3h_1
ightharpoonup v_1v_2, v_2v_2$ $v_3v_1
ightharpoonup h_2h_2, h_2h_3$
 $h_3h_1^*
ightharpoonup v_1v_2, v_2v_2, v_2v_2$ $v_3v_1^*
ightharpoonup h_2h_2, h_2h_3$
 $v_3v_1^*
ightharpoonup h_2h_2, h_2h_3$

Delete End Rule

		$v_{1}v_{2}$	v_1v_3	$v_{2}v_{2}$	v_2v_3	v_3v_1	$v_{3}v_{1}^{st}$
$M_1 =$	h_1h_2	0	1	0	1	1	0)
	h_1h_3	0	0	0	1	1	0
	h_2h_2	0	1	0	0	0	1
	h_2h_3	0	1	0	0	1	1
	h_3h_1	1	0	1	0	0	0
	$h_3h_1^*$	1	0	2	0	0	o <i>)</i>

Keep End Rule

$$M_1 h_2 \quad h_1 h_3 \quad h_2 h_2 \quad h_2 h_3 \quad h_3 h_1 \quad h_3 h_1^* \ v_1 v_2 \left(egin{array}{cccccccc} 0 & 1 & 0 & 0 & 1 & 1 \ 1 & 0 & 0 & 0 & 1 & 0 \ v_2 v_2 & 0 & 1 & 0 & 0 & 0 & 1 \ v_2 v_3 & 1 & 1 & 0 & 0 & 1 & 0 \ v_3 v_1 & 0 & 0 & 1 & 1 & 0 & 0 \ v_3 v_1^* & 0 & 0 & 2 & 1 & 0 & 0 \end{array}
ight)$$

6

$$\mathbf{w}_k = \mathbf{w}_0 (M_1 M_2)^k$$

$$\mathbf{w}_k = \mathbf{w}_0 (M_1 M_2)^k$$

$$\mathbf{w}_k^T = (M_2^T M_1^T)^k \mathbf{w}_0^T$$

$$\mathbf{w}_k = \mathbf{w}_0 (M_1 M_2)^k$$

$$\mathbf{w}_k^T = (M_2^T M_1^T)^k \mathbf{w}_0^T$$

2-step transition matrix
$$\mathcal{A} = M_2^T M_1^T = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \end{pmatrix}$$

$$\mathbf{w}_k = \mathbf{w}_0 (M_1 M_2)^k$$

$$\mathbf{w}_k^T = (M_2^T M_1^T)^k \mathbf{w}_0^T$$

2-step transition matrix
$$\mathcal{A} = M_2^T M_1^T = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \end{pmatrix}$$

$$\lambda_1 = (1+\sqrt{2})^2$$
, $\lambda_2 = \left(\frac{1+\sqrt{5}}{2}\right)^2$, $\lambda_3 = \dots$, $\lambda_4 = \dots$, $\lambda_5 = \dots$, $\lambda_6 = \dots$

$$\mathbf{w}_k = \mathbf{w}_0 (M_1 M_2)^k$$

$$\mathbf{w}_k^T = (M_2^T M_1^T)^k \mathbf{w}_0^T$$

2-step transition matrix
$$\mathcal{A} = M_2^T M_1^T = \begin{pmatrix} 2 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 0 & 2 & 3 \\ 1 & 1 & 2 & 3 & 0 & 0 \\ 1 & 1 & 1 & 2 & 0 & 0 \\ 2 & 1 & 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 2 & 3 \end{pmatrix}$$

$$\lambda_1 = (1+\sqrt{2})^2$$
, $\lambda_2 = \left(\frac{1+\sqrt{5}}{2}\right)^2$, $\lambda_3 = \dots$, $\lambda_4 = \dots$, $\lambda_5 = \dots$, $\lambda_6 = \dots$

$$\sqrt{\lambda_1} = [2; 2, 2, 2, \ldots], \ \sqrt{\lambda_2} = [1; 1, 1, 1, \ldots]$$

Beck-Donders-Yang (2020)

L(t) – geodesic with slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots]$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

Beck-Donders-Yang (2020)

$$L(t)$$
 - geodesic with slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, \ldots]$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0}\right)$$

$$\kappa_0 = \frac{\log \frac{1 + \sqrt{5}}{2}}{\log(1 + \sqrt{2})} = \frac{\log |\lambda_2|}{\log |\lambda_1|}$$

$$\frac{1+\sqrt{5}}{2}=[1;1,1,1,\ldots]$$
 obtained from α by digit-halving

Beck-Donders-Yang (2020)

$$L(t)$$
 - geodesic with slope $\alpha = 1 + \sqrt{2} = [2; 2, 2, 2, ...]$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0}\right)$$

$$\kappa_0 = \frac{\log \frac{1 + \sqrt{5}}{2}}{\log(1 + \sqrt{2})} = \frac{\log |\lambda_2|}{\log |\lambda_1|}$$

$$\frac{1+\sqrt{5}}{2}=[1;1,1,1,\ldots]$$
 obtained from α by digit-halving

error term is sharp

$$L_k(t)$$
 - geodesic with slope $\alpha_k = k + \sqrt{k^2 + 1} = [2k; 2k, 2k, 2k, \ldots]$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_k(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0(k)}\right)$$

$$\kappa_0(k) = \frac{\log \frac{k + \sqrt{k^2 + 4}}{2}}{\log(k + \sqrt{k^2 + 1})}$$

$$L_k(t)$$
 - geodesic with slope $\alpha_k = k + \sqrt{k^2 + 1} = [2k; 2k, 2k, 2k, \ldots]$

 ${\cal S}$ – arbitrary convex set on a square face of L-surface ${\cal P}$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_k(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0(k)}\right)$$

$$\kappa_0(k) = \frac{\log \frac{k + \sqrt{k^2 + 4}}{2}}{\log(k + \sqrt{k^2 + 1})} = \frac{\log |\lambda_2(k)|}{\log |\lambda_1(k)|}$$

 $\lambda_1(k)$ and $\lambda_2(k)$ eigenvalues of $\mathcal{A}(k)$ with largest absolute values

$$L_k(t)$$
 - geodesic with slope $\alpha_k = k + \sqrt{k^2 + 1} = [2k; 2k, 2k, 2k, \ldots]$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_k(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0(k)}\right)$$

$$\kappa_0(k) = \frac{\log \frac{k + \sqrt{k^2 + 4}}{2}}{\log(k + \sqrt{k^2 + 1})} = \frac{\log |\lambda_2(k)|}{\log |\lambda_1(k)|}$$

 $\lambda_1(k)$ and $\lambda_2(k)$ eigenvalues of $\mathcal{A}(k)$ with largest absolute values

$$\frac{k+\sqrt{k^2+4}}{2} = [k;k,k,k,\dots] \text{ obtained from } \alpha_k \text{ by digit-halving}$$

error term is sharp

 $L_{\gamma}(t)$ – geodesic with slope $\gamma>0$ quadratic irrational of the form

$$\gamma = [2c_0; 2c_1, \dots, 2c_h, 2a_1, \dots, 2a_m, 2a_1, \dots, 2a_m, \dots]$$

 $L_{\gamma}(t)$ – geodesic with slope $\gamma>0$ quadratic irrational of the form

$$\gamma = [2c_0; 2c_1, \dots, 2c_h, 2a_1, \dots, 2a_m, 2a_1, \dots, 2a_m, \dots]$$

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

 $L_{\gamma}(t)$ – geodesic with slope $\gamma > 0$ quadratic irrational of the form

$$\gamma = [2c_0; 2c_1, \dots, 2c_h, 2a_1, \dots, 2a_m, 2a_1, \dots, 2a_m, \dots]$$

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

irregularity exponent –
$$\kappa_0(\gamma) = \frac{\log |\lambda_2(\gamma)|}{\log |\lambda_1(\gamma)|}$$

 $L_{\gamma}(t)$ – geodesic with slope $\gamma>0$ quadratic irrational of the form

$$\gamma = [2c_0; 2c_1, \dots, 2c_h, 2a_1, \dots, 2a_m, 2a_1, \dots, 2a_m, \dots]$$

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

irregularity exponent –
$$\kappa_0(\gamma) = \frac{\log |\lambda_2(\gamma)|}{\log |\lambda_1(\gamma)|}$$

 $\lambda_1(\gamma)$ eigenvalue with larger absolute value of $\begin{pmatrix} 2a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 2a_m & 1 \\ 1 & 0 \end{pmatrix}$

 $\lambda_2(\gamma)$ eigenvalue with larger absolute value of $\begin{pmatrix} -a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} -a_m & 1 \\ 1 & 0 \end{pmatrix}$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$\circ \kappa_0(\gamma) > 0$$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_{\gamma}(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0(\gamma)}\right)$$

error term is sharp

 ${\cal S}$ — arbitrary convex set on a square face of L-surface ${\cal P}$

$$\circ \kappa_0(\gamma) > 0$$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_{\gamma}(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left(T^{\kappa_0(\gamma)}\right)$$

error term is sharp

$$\circ \ \kappa_0(\gamma) = 0$$

$$T \geqslant 2 \Rightarrow \left| \operatorname{meas}\{t \in [0, T] : L_{\gamma}(t) \in \mathcal{S}\} - \frac{\operatorname{area}(\mathcal{S})T}{3} \right| = O\left((\log T)^2\right)$$

 $L_{\gamma}(t)$ – geodesic with slope $\gamma>0$ quadratic irrational of the form

$$\gamma = [2c_0; 2c_1, \dots, 2c_h, 2a_1, \dots, 2a_m, 2a_1, \dots, 2a_m, \dots]$$

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

irregularity exponent –
$$\kappa_0(\gamma) = \frac{\log |\lambda_2(\gamma)|}{\log |\lambda_1(\gamma)|}$$

 $\lambda_1(\gamma)$ eigenvalue with larger absolute value of $\begin{pmatrix} 2a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} 2a_m & 1 \\ 1 & 0 \end{pmatrix}$

 $\lambda_2(\gamma)$ eigenvalue with larger absolute value of $\begin{pmatrix} -a_1 & 1 \\ 1 & 0 \end{pmatrix} \cdots \begin{pmatrix} -a_m & 1 \\ 1 & 0 \end{pmatrix}$

 ${\cal P}$ — finite polysquare surface with street-LCM h

 γ – quadratic irrational with all continued fraction digits divisible by h

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope γ

 \mathcal{P} – finite polysquare surface with street-LCM h

 γ – quadratic irrational with all continued fraction digits divisible by h

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope γ

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

irregularity exponent
$$-\kappa_0(\gamma) = \frac{\log |\lambda_2(\gamma)|}{\log |\lambda_1(\gamma)|}$$

 \mathcal{P} – finite polysquare surface with street-LCM h

 γ – quadratic irrational with all continued fraction digits divisible by h

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope γ

 $A(\gamma)$ – some appropriate transition matrix

 $\lambda_1(\gamma)$ and $\lambda_2(\gamma)$ are eigenvalues of $\mathcal{A}(\gamma)$ with largest absolute values

irregularity exponent –
$$\kappa_0(\gamma) = \frac{\log |\lambda_2(\gamma)|}{\log |\lambda_1(\gamma)|}$$

time-quantitative equidistribution of $\mathcal L$ with respect to all convex sets

2 types of almost vertical units and 2 types of almost horizontal units

2 types of almost vertical units and 2 types of almost horizontal units

d – number of square faces of polysquare surface ${\cal P}$

 $2d \times 2d$ transition matrix

d — number of square faces of polysquare surface ${\cal P}$

 $2d \times 2d$ transition matrix

geodesic on cube surface \hookrightarrow 1-direction geodesic on surface

 $2d \times 2d$ transition matrix with $d=24 \hookrightarrow 48 \times 48$ transition matrix geodesic on cube surface \hookrightarrow 1-direction geodesic on surface

polysquare surface ${\cal P}$ with d square faces

almost vertical geodesic V_0 from vertex in \mathcal{P} of slope $\alpha = [n; m, n, m, \ldots]$

 V_0 made up of 2d types of almost vertical units of slope α

vector space W with basis $\mathcal{W} = \{2d \text{ almost vertical units}\}$

 V_0 made up of 2d types of almost vertical units of slope α

vector space W with basis $W = \{2d \text{ almost vertical units}\}$

almost horizontal shortline H_0 in \mathcal{P} of slope α_1^{-1} with $\alpha_1 = [m; n, m, \ldots]$

 V_0 made up of 2d types of almost vertical units of slope α

vector space W with basis $W = \{2d \text{ almost vertical units}\}$

almost horizontal shortline H_0 in \mathcal{P} of slope α_1^{-1} with $\alpha_1 = [m; n, m, \ldots]$

 H_0 made up of 2d types of almost horizontal units of slope $lpha_1^{-1}$

vector space W' with basis $\mathcal{W}' = \{2d \text{ almost horizontal units}\}\$

 V_0 made up of 2d types of almost vertical units of slope α

vector space W with basis $W = \{2d \text{ almost vertical units}\}$

almost horizontal shortline H_0 in \mathcal{P} of slope α_1^{-1} with $\alpha_1 = [m; n, m, \ldots]$

 H_0 made up of 2d types of almost horizontal units of slope $lpha_1^{-1}$

vector space W' with basis $\mathcal{W}' = \{2d \text{ almost horizontal units}\}\$

almost vertical shortline V_0 in \mathcal{P} of slope $\alpha = [n; m, n, m, \ldots]$

back to W with basis W

first step of ancestor process $\mathscr{W} \to \mathscr{W}'$

coefficient vectors taken as column vectors

 $\hookrightarrow 2d \times 2d$ transition matrix M_1^T

first step of ancestor process $\mathcal{W} \to \mathcal{W}'$

coefficient vectors taken as column vectors

 $\hookrightarrow 2d \times 2d \text{ transition matrix } M_1^T$

second step of ancestor process $\mathcal{W}' \to \mathcal{W}$

coefficient vectors taken as column vectors

 $\hookrightarrow 2d \times 2d \text{ transition matrix } M_2^T$

first step of ancestor process $\mathcal{W} \to \mathcal{W}'$

coefficient vectors taken as column vectors

 $\hookrightarrow 2d \times 2d \text{ transition matrix } M_1^T$

second step of ancestor process $\mathcal{W}' \to \mathcal{W}$

coefficient vectors taken as column vectors

 $\hookrightarrow 2d \times 2d \text{ transition matrix } M_2^T$

2-step ancestor process $\mathcal{W} \to \mathcal{W}' \to \mathcal{W}$

 $\hookrightarrow 2d \times 2d$ 2-step transition matrix $\mathcal{A} = M_2^T M_1^T$

 ${\cal A}$ has eigenvalues $\lambda_1,\dots,\lambda_s$ with multiplicities d_1,\dots,d_s

$$|\lambda_1| \geqslant \ldots \geqslant |\lambda_s|$$
 $d_1 + \ldots + d_s = 2d$

 ${\mathcal A}$ has eigenvalues $\lambda_1,\ldots,\lambda_s$ with multiplicities d_1,\ldots,d_s

$$|\lambda_1| \geqslant \ldots \geqslant |\lambda_s|$$
 $d_1 + \ldots + d_s = 2d$

$$\mathbb{C}^{2d} = W_1 \oplus \ldots \oplus W_s$$

 $W_i - \mathcal{A}$ -invariant subspace of \mathbb{C}^{2d}

containing eigenvector Ψ_i corresponding to eigenvalue λ_i

 ${\mathcal A}$ has eigenvalues $\lambda_1,\ldots,\lambda_s$ with multiplicities d_1,\ldots,d_s

$$|\lambda_1| \geqslant \ldots \geqslant |\lambda_s|$$
 $d_1 + \ldots + d_s = 2d$

$$\mathbb{C}^{2d} = W_1 \oplus \ldots \oplus W_s$$

 $W_i - \mathcal{A}$ -invariant subspace of \mathbb{C}^{2d}

containing eigenvector Ψ_i corresponding to eigenvalue λ_i

$$d_i = 1 \Rightarrow \Psi_i$$
 generates W_i

 ${\mathcal A}$ has eigenvalues $\lambda_1,\dots,\lambda_s$ with multiplicities d_1,\dots,d_s

$$|\lambda_1| \geqslant \ldots \geqslant |\lambda_s|$$
 $d_1 + \ldots + d_s = 2d$

$$\mathbb{C}^{2d} = W_1 \oplus \ldots \oplus W_s$$

 $W_i - \mathcal{A}$ -invariant subspace of \mathbb{C}^{2d}

containing eigenvector Ψ_i corresponding to eigenvalue λ_i

 $d_i = 1 \Rightarrow \Psi_i$ generates W_i

 $d_i > 1 \Rightarrow \text{basis } \Psi_{i,j}, \ j = 1, \dots, d_i, \ \text{of } W_i, \ \text{with } \Psi_i = \Psi_{i,1}$

 ${\mathcal A}$ has eigenvalues $\lambda_1,\dots,\lambda_s$ with multiplicities d_1,\dots,d_s

$$|\lambda_1| \geqslant \ldots \geqslant |\lambda_s|$$
 $d_1 + \ldots + d_s = 2d$

$$\mathbb{C}^{2d} = W_1 \oplus \ldots \oplus W_s$$

 $W_i - \mathcal{A}$ -invariant subspace of \mathbb{C}^{2d}

containing eigenvector Ψ_i corresponding to eigenvalue λ_i

 $d_i = 1 \Rightarrow \Psi_i$ generates W_i

 $d_i>1$ \Rightarrow basis $\Psi_{i,j}$, $j=1,\ldots,d_i$, of W_i , with $\Psi_i=\Psi_{i,1}$

basis $\Psi_{i,j}$, $i=1,\ldots,s$, $j=1,\ldots,d_i$, of \mathbb{C}^{2d}

 V_0 starts at vertex of \mathcal{P}

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathscr{W}

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j}$$

V_0 starts at vertex of \mathcal{P}

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^s \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j} \qquad \mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0$$

V_0 starts at vertex of \mathcal{P}

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j}$$
 $\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \mathcal{A}^r \Psi_{i,j}$

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j}$$
 $\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \mathcal{A}^r \Psi_{i,j}$

assumption – $|\lambda_i| > 1 \Rightarrow$ basis of W_i consisting only of eigenvectors

$$|\lambda_i| \leq 1$$
, $i = s_0 + 1, \dots, s$

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j}$$
 $\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \mathcal{A}^r \Psi_{i,j}$

assumption – $|\lambda_i| > 1 \Rightarrow$ basis of W_i consisting only of eigenvectors

$$|\lambda_i| \leqslant 1$$
, $i = s_0 + 1, \dots, s$

$$\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s_0} \sum_{j=1}^{d_i} c_{i,j} \lambda_i^r \Psi_{i,j} + \text{bounded error}$$

with a finite succession of almost vertical units

with column coefficient vector \mathbf{w}_0 with respect to \mathcal{W}

$$\mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \Psi_{i,j}$$
 $\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s} \sum_{j=1}^{d_i} c_{i,j} \mathcal{A}^r \Psi_{i,j}$

assumption – $|\lambda_i| > 1 \Rightarrow$ basis of W_i consisting only of eigenvectors

$$|\lambda_i| \leqslant 1$$
, $i = s_0 + 1, \dots, s$

$$\mathbf{w}_r = \mathcal{A}^r \mathbf{w}_0 = \sum_{i=1}^{s_0} \sum_{j=1}^{d_i} c_{i,j} \lambda_i^r \Psi_{i,j} + \text{bounded error}$$

main term and main error term – two largest eigenvalues

algorithm for finding crucial eigenvalues of $\ensuremath{\mathcal{A}}$

h – number of horizontal streets in polysquare surface ${\cal P}$

algorithm for finding crucial eigenvalues of $\ensuremath{\mathcal{A}}$

h – number of horizontal streets in polysquare surface ${\cal P}$

can find $\mathcal{A}\text{-invariant}$ subspace \mathcal{V} of \mathbb{C}^{2d}

algorithm for finding crucial eigenvalues of ${\cal A}$

h — number of horizontal streets in polysquare surface ${\cal P}$ can find ${\cal A}\text{-invariant}$ subspace ${\cal V}$ of \mathbb{C}^{2d}

- with 2h generators and explicitly given

h – number of horizontal streets in polysquare surface ${\cal P}$

can find $\mathcal{A}\text{-invariant}$ subspace \mathcal{V} of \mathbb{C}^{2d}

- with 2h generators and explicitly given
- contains eigenvectors corresponding to all relevant eigenvalues of ${\cal A}$

algorithm for finding crucial eigenvalues of ${\cal A}$

h – number of horizontal streets in polysquare surface ${\cal P}$

can find \mathcal{A} -invariant subspace \mathcal{V} of \mathbb{C}^{2d}

- with 2h generators and explicitly given
- contains eigenvectors corresponding to all relevant eigenvalues of ${\cal A}$

 $h \times h$ street-spreading matrix ${f S}$

eigenvalues and eigenvectors of S

h – number of horizontal streets in polysquare surface ${\cal P}$

can find \mathcal{A} -invariant subspace \mathcal{V} of \mathbb{C}^{2d}

- with 2h generators and explicitly given
- contains eigenvectors corresponding to all relevant eigenvalues of ${\cal A}$

$$h \times h$$
 street-spreading matrix \mathbf{S} $\mathcal{A}|_{\mathcal{V}} = \begin{pmatrix} \mathbf{S} + I & I \\ \mathbf{S} & I \end{pmatrix}$

eigenvalues and eigenvectors of S

 \hookrightarrow eigenvalues and eigenvectors of $\mathcal{A}|_{\mathcal{V}}$

h – number of horizontal streets in polysquare surface ${\cal P}$

can find \mathcal{A} -invariant subspace \mathcal{V} of \mathbb{C}^{2d}

- with 2h generators and explicitly given
- contains eigenvectors corresponding to all relevant eigenvalues of ${\cal A}$

$$h \times h$$
 street-spreading matrix \mathbf{S} $\mathcal{A}|_{\mathcal{V}} = \begin{pmatrix} \mathbf{S} + I & I \\ \mathbf{S} & I \end{pmatrix}$

eigenvalues and eigenvectors of S

- \hookrightarrow eigenvalues and eigenvectors of $\mathcal{A}|_{\mathcal{V}}$
- \hookrightarrow relevant eigenvalues and eigenvectors of ${\mathcal A}$

 \hookrightarrow 1-direction geodesic on regular octagon surface

the 3 rectangles are similar

the 3 rectangles are similar

almost horizontal detour crossings and almost vertical shortcuts

 $normalized\ horizontal\ street\ length = \frac{length\ of\ horizontal\ street}{width\ of\ horizontal\ street}$

 $normalized\ horizontal\ street\ length = \frac{length\ of\ horizontal\ street}{width\ of\ horizontal\ street}$

normalized horizontal street length $=\frac{\text{length of horizontal street}}{\text{width of horizontal street}}$

normalized horizontal street lengths $2(1+\sqrt{2})$ and $1+\sqrt{2}$

normalized horizontal street length = $\frac{\text{length of horizontal street}}{\text{width of horizontal street}}$

normalized horizontal street lengths $2(1+\sqrt{2})$ and $1+\sqrt{2}$

 h^* – normalized horizontal street-LCM

= smallest integer multiple of all normalized horizontal street lengths

normalized horizontal street length = $\frac{\text{length of horizontal street}}{\text{width of horizontal street}}$

normalized horizontal street lengths $2(1+\sqrt{2})$ and $1+\sqrt{2}$

 h^* – normalized horizontal street-LCM $h^* = 2(1 + \sqrt{2})$

= smallest integer multiple of all normalized horizontal street lengths

street-rational polyrectangle surface

 h^* – normalized horizontal street-LCM

 v^* – normalized vertical street-LCM

street-rational polyrectangle surface

 h^* – normalized horizontal street-LCM

 v^* - normalized vertical street-LCM

if start with almost vertical geodesic

slope
$$\alpha = v^* a_0 + \frac{1}{h^* a_1 + \frac{1}{v^* a_2 + \frac{1}{h^* a_3 + \cdots}}}$$
 with $a_0, a_1, a_2, a_3, \ldots \in \mathbb{N}$

Beck-C-Yang (≥ 2020)

 ${\cal P}$ — finite street-rational polyrectangle surface

 ${\cal P}$ — finite street-rational polyrectangle surface

infinitely many explicitly given slopes α

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope α

 ${\cal P}$ — finite street-rational polyrectangle surface

infinitely many explicitly given slopes α

 \mathcal{L} – 1-direction geodesic in $\mathcal P$ with slope α

superdensity of $\mathcal L$

 \mathcal{P} – finite street-rational polyrectangle surface

infinitely many explicitly given slopes α

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope α

superdensity of \mathcal{L}

can compute irregularity exponent

 \mathcal{P} – regular k-gon surface for even $k \geqslant 8$

infinitely many explicitly given slopes α

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope α

superdensity of \mathcal{L}

can compute irregularity exponent

 \mathcal{P} – regular k-gon surface for even $k \geqslant 8$

infinitely many explicitly given slopes α

 ${\cal L}$ — 1-direction geodesic in ${\cal P}$ with slope ${\alpha}$

superdensity of \mathcal{L}

can compute irregularity exponent

?
$$k = 6$$
 ?

 \mathcal{P} - right triangle with angle π/k for even $k \geqslant 8$

infinitely many explicitly given slopes α

 ${\cal L}$ – billiard orbit in ${\cal P}$ with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

 \mathcal{P} - right triangle with angle π/k for even $k \geqslant 8$

infinitely many explicitly given slopes α

 \mathcal{L} – billiard orbit in \mathcal{P} with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

? k = 6 ?

billiard in regular octagon region

partial unfolding of billiard in left regular octagon

\hookrightarrow 1-direction geodesic on surface

 \hookrightarrow 1-direction geodesic in street-rational polyrectangle surface

Beck-C-Yang (\geqslant 2020)

 \mathcal{P} – regular k-gon for even $k \geqslant 6$

infinitely many explicitly given slopes α

 \mathcal{L} – billiard orbit in \mathcal{P} with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

 \hookrightarrow 1-direction geodesic on regular double-pentagon surface

 \hookrightarrow 1-direction geodesic on street-rational polyparallelogram surface

visualized as a street-rational polyrectangle surface

Beck-C-Yang (\geqslant 2020)

 \mathcal{P} - regular double-k-gon surface for odd $k \geqslant 5$

infinitely many explicitly given slopes α

 \mathcal{L} – 1-direction geodesic in \mathcal{P} with slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

Beck-C-Yang (\geqslant 2020)

 ${\cal P}$ - right triangle with angle π/k for odd $k\geqslant 5$

infinitely many explicitly given slopes α

 ${\cal L}$ – billiard orbit in ${\cal P}$ with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

partial unfolding of billiard in left regular pentagon

 \hookrightarrow 1-direction geodesic on street-rational polyparallelogram surface

Beck-C-Yang (\geqslant 2020)

 \mathcal{P} – regular k-gon for odd $k \geqslant 5$

infinitely many explicitly given slopes α

 ${\cal L}$ – billiard orbit in ${\cal P}$ with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

geodesics on surfaces of the Platonic solids

geodesic on regular tetrahedron surface — integrable

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

geodesic on regular dodecahedron surface

geodesics on surfaces of the Platonic solids

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

geodesic on regular dodecahedron surface

standard net of regular dodecahedron surface has 12 regular pentagons

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

geodesic on regular dodecahedron surface

 \hookrightarrow 1-direction geodesic on surface with 120 regular pentagon faces

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface geodesic on regular dodecahedron surface

 \hookrightarrow 1-direction geodesic on surface with 120 regular pentagon faces

1-direction geodesic on finite street-rational polyparallelogram surface

geodesic on regular dodecahedron surface

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

 \hookrightarrow 1-direction geodesic on surface with 120 regular pentagon faces

1-direction geodesic on finite street-rational polyparallelogram surface

geodesic on regular octahedron surface

geodesic on regular icosahedron surface

geodesic on regular tetrahedron surface — integrable

geodesic on cube surface \hookrightarrow 1-direction geodesic on polysquare surface

geodesic on regular dodecahedron surface

 \hookrightarrow 1-direction geodesic on surface with 120 regular pentagon faces

1-direction geodesic on finite street-rational polyparallelogram surface

geodesic on regular octahedron surface

geodesic on regular icosahedron surface

polytriangle surfaces

vertex-disjoint faces -(1,5), (2,6), (3,7), (4,8)

streets between vertex-disjoint faces -(1,5), (2,6), (3,7), (4,8)

streets between vertex-disjoint faces -(1,5), (2,6), (3,7), (4,8)

street-rational polyparallelogram surface

streets between vertex-disjoint faces -(1,5), (2,6), (3,7), (4,8)

detour crossings and shortcuts

Beck-C-Yang (\geqslant 2020)

 \mathcal{P} – finite polytriangle surface

infinitely many explicitly given slopes α

 \mathcal{L} – geodesic in \mathcal{P} with slope α

superdensity of $\mathcal L$

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

Beck-C-Yang (\geqslant 2020)

 \mathcal{P} – finite polytriangle region

infinitely many explicitly given slopes α

 \mathcal{L} – billiard orbit in \mathcal{P} with initial slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

Veech (1989)

 \mathcal{P} – Veech surface

- street-rational decomposition in any direction with rational slope

Veech (1989)

P – Veech surface

- street-rational decomposition in any direction with rational slope
- 1-direction geodesics exhibit uniform-periodic dichotomy optimal

Veech (1989)

- \mathcal{P} Veech surface
- street-rational decomposition in any direction with rational slope
- 1-direction geodesics exhibit uniform-periodic dichotomy optimal
 polysquare surfaces (including flat torus) and polytriangle surfaces
 translation surfaces of regular polygon billiards

others

$$\frac{\text{length}}{\text{width}}$$
 of horizontal streets

$$\frac{1+2a}{1/2}$$
, $\frac{1}{b}$, $\frac{2+4a}{1}$, $\frac{1}{b}$, $\frac{1+2a}{1/2}$

length width of horizontal streets

$$\frac{1+2a}{1/2}$$
, $\frac{1}{b}$, $\frac{2+4a}{1}$, $\frac{1}{b}$, $\frac{1+2a}{1/2}$

$$a=r_1\sqrt{d}+r_2>0$$
, $b=3r_1\sqrt{d}-3r_2-\frac{3}{2}>0$, $r_1,r_2\in\mathbb{Q}$, $d\geqslant 2$ squarefree

class of cathedral surfaces - McMullen-Mukamel-Wright (2017)

 $\frac{\text{length}}{\text{width}}$ of horizontal streets

$$\frac{1+2a}{1/2}$$
, $\frac{1}{b}$, $\frac{2+4a}{1}$, $\frac{1}{b}$, $\frac{1+2a}{1/2}$

$$a=r_1\sqrt{d}+r_2>0$$
, $b=3r_1\sqrt{d}-3r_2-\frac{3}{2}>0$, $r_1,r_2\in\mathbb{Q}$, $d\geqslant 2$ squarefree

two different shapes with ratio $2b(1+2a)=3(4r_1^2d-(2r_2+1)^2)\in\mathbb{Q}$

length width

of vertical streets
$$\frac{1}{a}$$
, $\frac{3+2b}{1/2}$, $\frac{3+2b}{1/2}$, $\frac{1}{a}$, $\frac{2}{2a}$

$$a=r_1\sqrt{d}+r_2>0$$
, $b=3r_1\sqrt{d}-3r_2-\frac{3}{2}>0$, $r_1,r_2\in\mathbb{Q}$, $d\geqslant 2$ squarefree

class of cathedral surfaces – McMullen–Mukamel–Wright (2017)

length width of vertical streets $\frac{1}{a}$, $\frac{3+2b}{1/2}$, $\frac{3+2b}{1/2}$, $\frac{1}{a}$, $\frac{2}{2a}$

$$\frac{1}{a}$$
, $\frac{3+2b}{1/2}$, $\frac{3+2b}{1/2}$, $\frac{1}{a}$, $\frac{2}{2a}$

$$a=r_1\sqrt{d}+r_2>0$$
, $b=3r_1\sqrt{d}-3r_2-\frac{3}{2}>0$, $r_1,r_2\in\mathbb{Q}$, $d\geqslant 2$ squarefree

two different shapes with ratio $2a(3+2b)=12(r_1^2d-r_2^2)\in\mathbb{Q}$

Beck–C–Yang (\geqslant 2020) infinitely many explicitly given slopes α \mathcal{L} – geodesic in cathedral surface with slope α superdensity of \mathcal{L} can compute irregularity exponent time-quantitative equidistribution of \mathcal{L} relative to all convex sets

classification of all affine-different Veech surfaces of genus 2

- Calta–McMullen L-staircases
- regular decagon surface with parallel edge identification

McMullen (2005, 2006)

classification of all affine-different Veech surfaces of genus 2

- Calta–McMullen L-staircases
- regular decagon surface with parallel edge identification

McMullen (2005, 2006)

classification of all affine-different Veech surfaces of genus 2

- Calta–McMullen L-staircases
- regular decagon surface with parallel edge identification

Calta (2004) ⊕ McMullen (2003) − L-staircases

generalization of the L-shape region and L-surface

Calta (2004) ⊕ McMullen (2003) − L-staircases

generalization of the L-shape region and L-surface

 $a=r_1\sqrt{d}+r_2$, $b=r_1\sqrt{d}+1-r_2$, $r_1,r_2\in\mathbb{Q}$, $d\geqslant 2$ squarefree street-rational polyrectangle surface

Beck-C-Yang (≥ 2020)

infinitely many explicitly given slopes α

 \mathcal{L} – geodesic in any surface of C–McM family with slope α

superdensity of \mathcal{L}

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

infinitely many explicitly given slopes α

 ${\cal L}$ – billiard orbit in any region of C–McM family with initial slope lpha

superdensity of $\mathcal L$

can compute irregularity exponent

time-quantitative equidistribution of $\mathcal L$ relative to all convex sets

width 2, height 2

width 2, height 2

a family of genus 2 non-regular decagon surfaces – not Veech

affine-different, width 2, height 2

infinitely many different a,b,c give street-rationality

a family of genus 2 non-regular decagon surfaces ${\cal S}$

McMullen (2005) — translation surface S in genus 2 not Veech

 \Rightarrow exist geodesics on S neither dense nor periodic

a family of genus 2 non-regular decagon surfaces ${\cal S}$

McMullen (2005) – translation surface S in genus 2 not Veech

 \Rightarrow exist geodesics on S neither dense nor periodic

Cheung-Masur (2006) – translation surface S in genus 2 not Veech

 \Rightarrow exist geodesics on S dense but not equidistributed

a family of genus 2 non-regular decagon surfaces ${\cal S}$

McMullen (2005) – translation surface S in genus 2 not Veech

 \Rightarrow exist geodesics on S neither dense nor periodic

Cheung-Masur (2006) – translation surface S in genus 2 not Veech

 \Rightarrow exist geodesics on S dense but not equidistributed

Beck-C-Yang (≥ 2020) – shortline method

- \Rightarrow exist geodesics on S with superdensity
- \Rightarrow exist geodesics on S with time-quantitative equidistribution

